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Three conjectures

Conjecture (Schanuel’s conjecture)
If z1, . . . , zn ∈ C are Q-linearly independent, then

tdQ Q(z1, . . . , zn, e
z1 , . . . , ezn) ≥ n

where td stands for transcendence degree.

Conjecture (Zilber’s EAC conjecture)
Let V ⊆Cn×(C×)n be an irreducible free and rotund variety. Then there is
a point z ∈ Cn such that (z, ez) ∈ V .

Conjecture (Zilber’s quasiminimality conjecture)
Cexp := (C; +, ·, exp) is quasiminimal, i.e. every definable subset is countable
or co-countable.
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Schanuel’s conjecture

Conjecture (Schanuel’s conjecture)
If z1, . . . , zn ∈ C are Q-linearly independent, then

tdQ Q(z1, . . . , zn, e
z1 , . . . , ezn) ≥ n

where td stands for transcendence degree.

This captures the transcendence properties of exp.
It is out of reach. For example, it implies the algebraic independence of e
and π which is a long-standing open problem. To see this, set
n = 2, z1 = iπ, z2 = 1.
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Exponential equations

Which systems of equations have solutions in Cexp := (C; +, ·, exp)?
Consider the system z1 = 2z2 + 1, ez1 = 3(ez2)2.
exp is a homomorphism from the additive group (C; +, 0) to the
multiplicative group (C×; ·, 1), i.e. ex+y = ex · ey. Therefore the above
system does not have a solution.
Let p(X,Y ) ∈ Q[X,Y ] be a non-zero polynomial. Does the system
ez = 1, p(e, z) = 0 have a solution?
This depends on the aforementioned problem on algebraic independence
of e and π. If they are independent, then the above system cannot have a
solution.
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Iterated exponentials

We can get rid of iterated exponentials. For instance, given the equation
ee

z

= z, we introduce new variables z1, z2, w1, w2 and consider the
system w1 = ez1 , w2 = ez2 , w1 = z2, w2 = z1.

This system has a solution if and only if the original equation does.
The system has a solution iff the variety V ⊆C2×(C×)2 defined by
w1 = z2, w2 = z1 contains an exponential point, i.e. a point
(z1, z2, e

z1 , ez2).
Thus, the question is: which varieties V ⊆Cn×(C×)n intersect the graph
Γ := {(z, exp(z)) : z ∈ Cn}⊆C2n?
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Exponential Algebraic Closedness

Conjecture (EAC)
Let V ⊆Cn×(C×)n be an irreducible free and rotund variety. Then there is
a point z ∈ Cn such that (z, ez) ∈ V , where z := (z1, . . . , zn).

Here and later boldface letters denote tuples.
Let Z and W be the projections of V to Cn and (C×)n respectively.
Freeness means that Z is free of additive relations and W is free of
multiplicative relations.
Rotundity is an algebraic property of V related to Schanuel’s conjecture.
For example, a rotund variety V ⊆Cn×(C×)n must have dimV ≥ n, and
similar inequalities hold for certain projections of V .
The strong EAC conjecture is about existence of generic exponential
points in free and rotund varieties.
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Quasiminimality

Definition
An uncountable structure is said to be quasiminimal if every definable subset
(in one variable) is either countable or its complement is countable. Here
definable can mean first-order definable, or Lω1,ω-definable or, more generally,
any subset which is invariant under all automorphisms (over a countable set of
parameters).

Conjecture (Zilber’s quasiminimality conjecture)
Cexp := (C; +, ·, exp) is quasiminimal.

The set 2πiZ is definable as the kernel of exp.
In fact, Z is definable as the set

{a ∈ C : ∀x(exp(x) = 1→ exp(ax) = 1)}.

An open question: is R definable in Cexp?
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Zilber’s pseudo-exponentiation

Zilber constructed algebraically closed fields of characteristic 0 equipped
with a unary function, called pseudo-exponentiation, satisfying some of
the basic properties of complex exp (homomorphism, kernel), the
analogues of Schanuel’s conjecture and the strong EAC conjecture, and
the Countable Closure Property.
These can be axiomatised in the language Lω1,ω(∃>ℵ0).
Zilber showed that that theory is categorical in uncountable cardinals. In
particular, there is a unique model Bexp of cardinality 2ℵ0 .

Conjecture (Zilber)
Bexp

∼= Cexp.

This conjecture is equivalent to Schanuel + strong EAC.
Bexp is quasiminimal, so the above conjecture implies the quasiminimality
conjecture.
Bays and Kirby proved that EAC implies quasiminimality.
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EAC: What is known

Exponential equations in one variable can be solved. E.g. ez = z has
infinitely many solutions.
Let V ⊆Cn× (C×)

n, and let Z and W be the projections of V to Cn and
(C×)n respectively.

1 If dimZ = n (one says V has a dominant projection to Cn), then
V ∩ Γ 6= ∅. (Brownawell-Masser, D’Aquino-Fornasiero-Terzo)

2 EAC for dimZ = 1. (Mantova-Masser)
3 EAC for raising to generic real powers, i.e. Z is a generic real linear space

and V = Z ×W . (Zilber)

The analogue of (3) for abelian varieties. (Gallinaro)
The analogue of (1) for abelian varieties. (A.-Kirby-Mantova)
There are similar conjectures and theorems for the modular j-function.
(A., Eterović, Gallinaro, Herrero, Kirby)
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Elliptic curves and abelian varieties

Let Λ⊆C be a lattice of rank 2, e.g. Z+iZ.
The quotient C /Λ is a torus.
It can be embedded into the projective plane P2(C). The embedding is
given by expE : z 7→ [1 : ℘(z) : ℘′(z)/2] where ℘ is the Weierstrass
℘-function associated to the lattice Λ. The image is an elliptic curve.
An elliptic curve E⊆P2 satisfies a cubic equation (in affine coordinates
y2 = 4x3 − g2x− g3).
Thus, elliptic curves are connected projective algebraic groups of
dimension 1.
Abelian varieties are higher dimensional analogues of elliptic curves:
connected projective algebraic groups.
When a quotient Cg /Λ (with Λ a lattice of rank 2g) can be embedded in
a projective space, we get an abelian variety.
The group structure of an abelian variety is commutative.
Think of products of elliptic curves.
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A lattice
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EAC for abelian varieties: dominant projection
Let A be an abelian variety of dimension n (e.g. A = En) and let
expA : Cn → A be its exponential map. Its kernel is a lattice Λ⊆Cn of rank
2n.

Theorem (A.-Kirby-Mantova)
Let V ⊆Cn×A be an algebraic subvariety with dominant projection to Cn, that
is, its projection to Cn has dimension n. Then there is z ∈ Cn such that
(z, expA(z)) ∈ V .
Moreover, we can locally parametrise all sufficiently large exponential points in
V be points of Λ.

For example, ℘′(℘(z)2) = z has infinitely many solutions.
Brownawell-Masser (and D’Aquino-Fornasiero-Terzo) used Newton’s
iterative method to approximate solutions, and in particular
Kantorovich’s theorem which gives criteria for these approximations to
converge to an actual solution.
Our approach is more geometric. It also works for the usual complex
exponentiation. In both cases we also locally describe all sufficiently large
exponential points.
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Proof

Clearly, dimV ≥ n. We may replace V with a subvariety and assume
dimV = n.
If (z,w) are the coordinates on V then we can think of w as an algebraic
expression of z, for z is algebraically independent on V .
Let α : D → A be an algebraic map whose graph is contained in V .
Here D⊆Cn is a sector domain.
α is holomorphic on D.
Since (z, α(z)) ∈ V , it suffices to solve the equation

expA(z) = α(z).
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A sector domain in C

D

Im(z)

Re(z)
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Mapping solutions to the lattice

Since D is simply connected, we can choose a holomorphic branch of
logarithm of α, which we denote by G : D → Cn.
We can pick a fundamental domain M of Λ, and a branch of logarithm
LogA : A→M , and assume G = LogA ◦α.
In particular, since M is bounded, so is G.
Define a map F : D → Cn by

F : z 7→ z −G(z) = z − LogA α(z).

Clearly, z ∈ D solves expA(z) = α(z) if and only if F (z) ∈ Λ.
Thus, to prove existence of solutions we need to show that the image
F (D) contains lattice points.
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The image F (D)

Since G is bounded, by Cauchy estimates, all of its first partial derivatives
are bounded. In fact, shrinking D we may assume the first partial
derivatives are arbitrarily small, i.e. ‖dG(z)‖ < ε on D for a small ε.
So dF (z) is close to the identity matrix, hence it is non-singular.
By the inverse function theorem, F is a local homeomorphism, hence an
open map.
So the image E := F (D) is open and connected.
Moreover, F (z)− z = −G(z) is bounded, so F behaves like a translation
near points at infinity. So E and D cannot differ by a large set.
Let E′ := {z ∈ D : z +B⊆D}, where B is a closed ball centred at 0
containing G(D). Then E′⊆E.
E′ contains a smaller sector domain, hence it contains infinitely many
lattice points. Thus, E ∩ Λ is infinite, and we get infinitely many
solutions to expA(z) = α(z).
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The sets D and E ′ for n = 1

E′
z+B

z

D

Im(z)

Re(z)
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Finding all solutions in D

Lemma
F is injective on D.

Corollary
The map F has a holomorphic inverse S : E → D.
All solutions of expA(z) = α(z) with z ∈ D are given by z = S(λ) with
λ ∈ E ∩ Λ.
Asymptotically we have S(x) = x+ Logα(x) + o(1) as |x| → ∞ with
x ∈ E.
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Finding all large exponential points in V

We patch together the maps S defined on various sector domains. This
gives a multi-valued map.
If the projection π : V → Cn has degree d, then V is covered by the
graphs of d branches of α.
We can find all large solutions for each branch. Altogether, there will be
roughly d solutions in each fundamental domain near points at infinity.
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Main theorem

Theorem

Let A be a complex abelian variety of dimension n. Let V ⊆Cn×A be an
irreducible subvariety of dimension n with dominant projection π : V → Cn.
Let d := deg π. Then there is a subset Ω∗⊆Pn, which is open in the complex
topology, such that C := Ω∗ \Cn is Zariski open dense in Pn \Cn, and there is
a sheaf S of analytic maps on Ω := Ω∗ ∩ Cn taking values in Cn with the
following properties:

1 The image S(Ω) contains Ω except possibly for a bounded strip along the
boundary ∂Ω.

2 For λ ∈ Ω ∩ Λ, each value of S(λ) satisfies (S(λ), expA(S(λ))) ∈ V .
Furthermore, these are the only exponential points (z, expA(z)) of V with
z in Ω (except possibly near the boundary).

3 These exponential points are locally in d-to-1 correspondence with the
points of Λ ∩ Ω.

4 The solutions S(λ) are asymptotically translates of the lattice.
5 In particular, {(z, expA(z)) ∈ V } is Zariski dense in V .
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The case of algebraic tori

Theorem

Let V ⊆Cn×(C×)n be a subvariety of dimension n with dominant projection
π : V → Cn. Let d := deg π.
Then there is a subset Ω∗⊆Pn, which is open in the complex topology, such
that C := Ω∗ \ Cn is Zariski dense and open in Pn \Cn, and there is a sheaf S
of analytic maps on Ω := Ω∗ ∩ Cn taking values in Cn with the following
properties:

1 The image S(Ω) contains Ω except possibly for a narrow strip along the
boundary ∂Ω.

2 For λ ∈ Ω ∩ Λ, each value of S(λ) satisfies (S(λ), exp(S(λ))) ∈ V .
Furthermore, these are the only exponential points (z, exp(z)) of V with
z ∈ Ω (except possibly near the boundary).

3 These exponential points are locally in d-to-1 correspondence with the
points of Λ ∩ Ω.

4 The solutions S(λ) are asymptotically close to lattice points.
5 In particular, {(z, exp(z)) ∈ V } is Zariski dense in V .
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